15.3.2) Polar Geometry and Double Integrals

A circle with radius r has area πr^{2}. A sector of the circle with central angle θ (measured in radians) has area $\frac{1}{2} \theta r^{2}$. (Notice that the full circle is obtained when $\theta=2 \pi$, in which case the formula $\frac{1}{2} \theta r^{2}$ gives us $\frac{1}{2}(2 \pi) r^{2}=\pi r^{2}$.)

An annulus is a region bounded by two concentric circles. (A more casual term for this is a ring.) The area of the annulus is the difference of the areas of the two circles: If the inner circle has radius r_{1} and the outer circle has radius r_{2}, then the area of the annulus is $\pi\left(r_{2}\right)^{2}-\pi\left(r_{1}\right)^{2}=\pi\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right]$. A sector of the annulus with central angle θ (measured in radians) has area $\frac{1}{2} \theta\left(r_{2}\right)^{2}-\frac{1}{2} \theta\left(r_{1}\right)^{2}=\frac{1}{2} \theta\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right]$. (Notice that the full annulus is obtained when $\theta=2 \pi$, in which case the formula $\frac{1}{2} \theta\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right]$ gives us $\left.\frac{1}{2}(2 \pi)\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right]=\pi\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right].\right)$

The formula for the area of a sector of an annulus can be rewritten as follows:
$\frac{1}{2} \theta\left[\left(r_{2}\right)^{2}-\left(r_{1}\right)^{2}\right]=\frac{1}{2} \theta\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right)=\frac{r_{1}+r_{2}}{2}\left(r_{2}-r_{1}\right) \theta$.
$\frac{r_{1}+r_{2}}{2}$ is the average of the inner radius and outer radius of the annulus; we may refer to this as the average radius of the annulus, and we may denote it as $r_{a v}$.
$r_{2}-r_{1}$ is the difference of the outer and inner radii; we may refer to this as the width of the annulus, and we may denote it as w.

Thus, the area of a sector of an annulus is $r_{a v} w \theta$ (in other words, average radius times width times central angle measure).

A polar rectangle is either a sector of a circle or a sector of an annulus. In polar coordinates, it is $\{(r, \theta) \mid r \in[a, b], \theta \in[\alpha, \beta]\}$, where $0 \leq a<b$ and $\alpha<\beta \leq \alpha+2 \pi$. This set may also be written as $[a, b] \times[\alpha, \beta]$.

- If $a=0$, it is a sector of a circle.
- If $a>0$, it is a sector of an annulus.

The central angle of the polar rectangle $[a, b] \times[\alpha, \beta]$ is $\beta-\alpha$.
If our polar rectangle is a circle sector (i.e., if $a=0$), then its radius is b, so its area is $\frac{1}{2}(\beta-\alpha) b^{2}$.

If our polar rectangle is an annulus sector (i.e., if $a>0$), then its average radius is $\frac{a+b}{2}$ and its width is $b-a$, so its area is $\frac{a+b}{2}(b-a)(\beta-\alpha)$.

To compute the area of the polar rectangle $[a, b] \times[\alpha, \beta]$, we may always use the formula $\frac{a+b}{2}(b-a)(\beta-\alpha)$, since if $a=0$, this reduces to the other formula, $\frac{1}{2}(\beta-\alpha) b^{2}$.

In constructing a Riemann Sum, we partition the polar rectangle $[a, b] \times[\alpha, \beta]$ into polar subrectangles, by partitioning the interval $[a, b]$ into n subintervals, each of length $\Delta r=\frac{b-a}{n}$, and by partitioning the interval $[\alpha, \beta]$ into n subintervals, each of length $\Delta \theta=\frac{\beta-\alpha}{n}$. We denote the subintervals of $[a, b]$ as $I_{1}, I_{2}, \ldots, I_{n}$, and we denote the subintervals of $[\alpha, \beta]$ as $J_{1}, J_{2}, \ldots, J_{n}$. Pairing each of the former with each of the latter gives us n^{2} subrectangles, which we denote as $\left[R_{i, j}\right]_{\substack{j=1, \ldots, \ldots}}^{j=1, \ldots, n}$

For each subrectangle $R_{i, j}$, let $r_{i, j}$ denote its average radius. Then the area of the subrectangle is $r_{i, j} \Delta r \Delta \theta$. When we apply the limit as $n \rightarrow \infty$, this becomes $r d r d \theta$, also referred to as $d A$.

CAUTION: Students often forget to include the factor r in $d A$. In Cartesian coordinates, $d A=d x d y$, but in polar coordinates, $d A=r d r d \theta$, not just $d r d \theta$.

Thus, if D is the polar rectangle $[a, b] \times[\alpha, \beta]$, then $\iint_{D} f(x, y) d A=$ $\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta$.

If D is the Type II polar region $\left\{(r, \theta) \mid \theta \in[\alpha, \beta], h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$, then $\iint_{D} f(x, y) d A=$ $\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta$.

